| Page 440 | Kisaco Research

Author:

Xavier Soosai

Chief Information Officer
Center for Information Technology/National Institute of Health

As the Director of the Office of Information Technology Services of the Center for Information Technology (CIT), Soosai oversees ten service areas and the delivery of scientific research and business operations across the institutes and centers (ICs) at NIH. This includes maintaining the high-performance computing environment used by NIH intramural scientists; maintaining NIH’s secure, high-speed network; ensuring the viability and availability of collaboration services, compute hosting and storage services, identity and access management services, service desk support, and more for the NIH community. 

Soosai works with CIT leadership and internal service area managers and collaborates with NIH ICs to define scope and provide technical expertise, strategic planning, and leadership for local and enterprise IT projects that drive efficiency and innovation across NIH. Additionally, Soosai is responsible for directing the evaluation and adoption of rapidly evolving technology and forecasting future technology needs.

 

Xavier Soosai

Chief Information Officer
Center for Information Technology/National Institute of Health

As the Director of the Office of Information Technology Services of the Center for Information Technology (CIT), Soosai oversees ten service areas and the delivery of scientific research and business operations across the institutes and centers (ICs) at NIH. This includes maintaining the high-performance computing environment used by NIH intramural scientists; maintaining NIH’s secure, high-speed network; ensuring the viability and availability of collaboration services, compute hosting and storage services, identity and access management services, service desk support, and more for the NIH community. 

Soosai works with CIT leadership and internal service area managers and collaborates with NIH ICs to define scope and provide technical expertise, strategic planning, and leadership for local and enterprise IT projects that drive efficiency and innovation across NIH. Additionally, Soosai is responsible for directing the evaluation and adoption of rapidly evolving technology and forecasting future technology needs.

 

Author:

Rahul Gupta

AI Research Scientist
US Army Laboratory

Dr. Rahul Gupta has been working at the Army Research Lab for more than a decade. In his current position he is conducting research and development using Deep Learning Artificial Neural Network and Convolutional Neural Network. He joined ARL as a Distinguished Research Scholar and led several successful programs. He became a Fellow of the American Society of Mechanical Engineers in 2014. He is passionate about mentoring and team building with the goal of providing the Army the best possible technology to dominate today’s complex Multi-Domain Environment (MDE).

Rahul Gupta

AI Research Scientist
US Army Laboratory

Dr. Rahul Gupta has been working at the Army Research Lab for more than a decade. In his current position he is conducting research and development using Deep Learning Artificial Neural Network and Convolutional Neural Network. He joined ARL as a Distinguished Research Scholar and led several successful programs. He became a Fellow of the American Society of Mechanical Engineers in 2014. He is passionate about mentoring and team building with the goal of providing the Army the best possible technology to dominate today’s complex Multi-Domain Environment (MDE).

Author:

Tom Sheffler

Solution Architect, Next Generation Sequencing
Former Roche

Tom earned his PhD from Carnegie Mellon in Computer Engineering with a focus on parallel computing architectures and prrogramming models.  His interest in high-performance computing took him to NASA Ames, and then to Rambus where he worked on accelerated memory interfaces for providing high bandwidth.  Following that, he co-founded the cloud video analytics company, Sensr.net, that applied scalable cloud computing to analyzing large streams of video data.  He later joined Roche to work on next-generation sequencing and scalable genomics analysis platforms.  Throughout his career, Tom has focused on the application of high performance computer systems to real world problems.

Tom Sheffler

Solution Architect, Next Generation Sequencing
Former Roche

Tom earned his PhD from Carnegie Mellon in Computer Engineering with a focus on parallel computing architectures and prrogramming models.  His interest in high-performance computing took him to NASA Ames, and then to Rambus where he worked on accelerated memory interfaces for providing high bandwidth.  Following that, he co-founded the cloud video analytics company, Sensr.net, that applied scalable cloud computing to analyzing large streams of video data.  He later joined Roche to work on next-generation sequencing and scalable genomics analysis platforms.  Throughout his career, Tom has focused on the application of high performance computer systems to real world problems.

Hyperscaler
Emerging Memory Innovations
Cost/Power
AI/ML Compute
Moderator

Author:

Shyam Iyer

Distinguished Engineer & Member Of SNIA Technical Council
Dell

Shyam Iyer

Distinguished Engineer & Member Of SNIA Technical Council
Dell
Speakers

Author:

David Kanter

Founder & Executive Director
MLCommons

David co-founded and is the Head of MLPerf for MLCommons, the world leader in building benchmarks for AI. MLCommons is an open engineering consortium with a mission to make AI better for everyone through benchmarks and data. The foundation for MLCommons began with the MLPerf benchmarks in 2018, which rapidly scaled as a set of industry metrics to measure machine learning performance and promote transparency of machine learning techniques. In collaboration with its 125+ members, global technology providers, academics, and researchers, MLCommons is focused on collaborative engineering work that builds tools for the entire AI industry through benchmarks and metrics, public datasets, and measurements for AI Safety. Our software projects are generally available under the Apache 2.0 license and our datasets generally use CC-BY 4.0.

David Kanter

Founder & Executive Director
MLCommons

David co-founded and is the Head of MLPerf for MLCommons, the world leader in building benchmarks for AI. MLCommons is an open engineering consortium with a mission to make AI better for everyone through benchmarks and data. The foundation for MLCommons began with the MLPerf benchmarks in 2018, which rapidly scaled as a set of industry metrics to measure machine learning performance and promote transparency of machine learning techniques. In collaboration with its 125+ members, global technology providers, academics, and researchers, MLCommons is focused on collaborative engineering work that builds tools for the entire AI industry through benchmarks and metrics, public datasets, and measurements for AI Safety. Our software projects are generally available under the Apache 2.0 license and our datasets generally use CC-BY 4.0.

Author:

Dylan Patel

Chief Analyst
Semi Analysis

Dylan Patel

Chief Analyst
Semi Analysis

Author:

Matthew Burns

Technical Marketing Manager
Samtec

Matthew Burns develops go-to-market strategies for Samtec’s Silicon-to-Silicon solutions. Over the course of 20+ years, he has been a leader in design, applications engineering, technical sales and marketing in the telecommunications, medical and electronic components industries. Mr. Burns holds a B.S. in Electrical Engineering from Penn State University.

Matthew Burns

Technical Marketing Manager
Samtec

Matthew Burns develops go-to-market strategies for Samtec’s Silicon-to-Silicon solutions. Over the course of 20+ years, he has been a leader in design, applications engineering, technical sales and marketing in the telecommunications, medical and electronic components industries. Mr. Burns holds a B.S. in Electrical Engineering from Penn State University.

Author:

Helen Byrne

VP, Solution Architect
Graphcore

Helen leads the Solution Architects team at Graphcore, helping innovators build their AI solutions using Graphcore’s Intelligence Processing Units (IPUs). She has been at Graphcore for more than 5 years, previously leading AI Field Engineering and working in AI Research, working on problems in Distributed Machine Learning. Before landing in the technology industry, she worked in Investment Banking. Her background is in Mathematics and she has a MSc in Artificial Intelligence.

Helen Byrne

VP, Solution Architect
Graphcore

Helen leads the Solution Architects team at Graphcore, helping innovators build their AI solutions using Graphcore’s Intelligence Processing Units (IPUs). She has been at Graphcore for more than 5 years, previously leading AI Field Engineering and working in AI Research, working on problems in Distributed Machine Learning. Before landing in the technology industry, she worked in Investment Banking. Her background is in Mathematics and she has a MSc in Artificial Intelligence.

Generative AI is reshaping compute and connectivity by pushing the limits of today's semiconductors. A new era of custom silicon designs has emerged, and is being embraced by all the major hyper-scalers. Chiplets in advanced 2.5D/3D packaging with high-speed interfaces such as HBM, UCIe, PCIe/CXL, and Ethernet have become key to address the critical challenges of memory bottlenecks for AI workloads. Learn how Alphawave Semi’s custom silicon and chiplet platforms are paving the way for unprecedented levels of performance, power efficiency, and scalability in AI-driven applications.

Author:

Mohit Gupta

SVP and GM, Custom Silicon and IP
Alphawave Semi

Mohit Gupta joined Alphawave Semi in September 2022 as part of the OpenFive acquisition from SiFive. He currently serves as Senior Vice President and General Manager for IP and Custom Silicon Business unit. Mohit brings in more than 2 decades of experience in semiconductor IP and SoC domains leading worldwide engineering, application engineering, products, and field teams. Prior to Alphawave Semi, he led the IP and Custom SoC business units at SiFive and Rambus.

Mohit holds a Bachelor of Engineering in Electronics and Communications from Thapar University and Master of Science in Microelectronics from BITS, Pilani. He also holds an executive MBA in International Business from Indian Institute of Management, Calcutta.

Mohit Gupta

SVP and GM, Custom Silicon and IP
Alphawave Semi

Mohit Gupta joined Alphawave Semi in September 2022 as part of the OpenFive acquisition from SiFive. He currently serves as Senior Vice President and General Manager for IP and Custom Silicon Business unit. Mohit brings in more than 2 decades of experience in semiconductor IP and SoC domains leading worldwide engineering, application engineering, products, and field teams. Prior to Alphawave Semi, he led the IP and Custom SoC business units at SiFive and Rambus.

Mohit holds a Bachelor of Engineering in Electronics and Communications from Thapar University and Master of Science in Microelectronics from BITS, Pilani. He also holds an executive MBA in International Business from Indian Institute of Management, Calcutta.

Disaggregated memory is a promising approach that addresses the limitations of traditional memory architectures by enabling memory to be decoupled from compute nodes and shared across a data center. Cloud platforms have deployed such systems to improve overall system memory utilization, but performance can vary across workloads. High-performance computing (HPC) is crucial in scientific and engineering applications, where HPC machines also face the issue of underutilized memory. As a result, improving system memory utilization while understanding workload performance is essential for HPC operators. Therefore, learning the potential of a disaggregated memory system before deployment is a critical step. This paper proposes a methodology for exploring the design space of a disaggregated memory system. It incorporates key metrics that affect performance on disaggregated memory systems: memory capacity, local and remote memory access ratio, injection bandwidth, and bisection bandwidth, providing an intuitive approach to guide machine configurations based on technology trends and workload characteristics. We apply our methodology to analyze thirteen diverse workloads, including AI training, data analysis, genomics, protein, fusion, atomic nuclei, and traditional HPC bookends. Our methodology demonstrates the ability to comprehend the potential and pitfalls of a disaggregated memory system and provides motivation for machine configurations. Our results show that eleven of our thirteen applications can leverage injection bandwidth disaggregated memory without affecting performance, while one pays a rack bisection bandwidth penalty and two pay the system-wide bisection bandwidth penalty. In addition, we also show that intra-rack memory disaggregation would meet the application's memory requirement and provide enough remote memory bandwidth.

Systems Infrastructure/Architecture
HPC
Emerging Memory Innovations

Author:

Nan Ding

Research Scientist
Berkeley Research Lab

Nan Ding is a Research Scientist in the Performance and Algorithms group of the Computer Science Department at Lawrence Berkeley National Laboratory. Her research interests include high-performance computing, performance modeling and performance optimization. Nan received her Ph.D. in computer science from Tsinghua University, Beijing, China in 2018.

Nan Ding

Research Scientist
Berkeley Research Lab

Nan Ding is a Research Scientist in the Performance and Algorithms group of the Computer Science Department at Lawrence Berkeley National Laboratory. Her research interests include high-performance computing, performance modeling and performance optimization. Nan received her Ph.D. in computer science from Tsinghua University, Beijing, China in 2018.

Author:

Tirthankar Lahiri

SVP, Data & In-Memory Technologies
Oracle

Tirthankar Lahiri is Vice President of the Data and In-Memory Technologies group for Oracle Database and is responsible for the Oracle Database Engine (including Database In-Memory, Data and Indexes, Space Management, Transactions, and the Database File System), the Oracle TimesTen In-Memory Database, and Oracle NoSQLDB. Tirthankar has 22 years of experience in the Database industry and has worked extensively in a variety of areas including Manageability, Performance, Scalability, High Availability, Caching, Distributed Concurrency Control, In-Memory Data Management, NoSQL architectures, etc. He has 27 issued and has several pending patents in these areas. Tirthankar has a B.Tech in Computer Science from the Indian Institute of Technology (Kharagpur) and an MS in Electrical Engineering from Stanford University.

Tirthankar Lahiri

SVP, Data & In-Memory Technologies
Oracle

Tirthankar Lahiri is Vice President of the Data and In-Memory Technologies group for Oracle Database and is responsible for the Oracle Database Engine (including Database In-Memory, Data and Indexes, Space Management, Transactions, and the Database File System), the Oracle TimesTen In-Memory Database, and Oracle NoSQLDB. Tirthankar has 22 years of experience in the Database industry and has worked extensively in a variety of areas including Manageability, Performance, Scalability, High Availability, Caching, Distributed Concurrency Control, In-Memory Data Management, NoSQL architectures, etc. He has 27 issued and has several pending patents in these areas. Tirthankar has a B.Tech in Computer Science from the Indian Institute of Technology (Kharagpur) and an MS in Electrical Engineering from Stanford University.

Author:

Ping Zhou

Researcher/Architect
Bytedance Ltd.

Ping Zhou is a Senior Researcher/Architect with ByteDance, focusing on next-gen infrastructure innovations with hardware/software co-design. Prior to joining ByteDance, Ping worked with Google, Alibaba and Intel on products including Google Assistant, Optane SSD and Open Channel SSD. Ping earned his PhD in Computer Engineering at University of Pittsburgh, specializing in the field of emerging memory and storage technologies.

Ping Zhou

Researcher/Architect
Bytedance Ltd.

Ping Zhou is a Senior Researcher/Architect with ByteDance, focusing on next-gen infrastructure innovations with hardware/software co-design. Prior to joining ByteDance, Ping worked with Google, Alibaba and Intel on products including Google Assistant, Optane SSD and Open Channel SSD. Ping earned his PhD in Computer Engineering at University of Pittsburgh, specializing in the field of emerging memory and storage technologies.

Author:

Mahesh Wagh

Senior Fellow & Server System Architect
AMD

Mahesh Wagh is AMD Sr. Fellow, Server System Architect in the AMD Datacenter System Architecture and Engineering team, developing world-class products and solutions around EPYC processors.

Prior to joining AMD, Mahesh was a Senior Principal Engineer at Intel corporation, focusing on IO and SoC architecture and related technology developments. He has broad experience in chipset and IO architecture, design and validation on both Server and Client platforms.

Some of Mahesh´s significant achievements include the enhancements to PCI Express Architecture and Specification, leading CPU IO domain architecture and IO IP architecture & Interfaces and leading AMD´s Compute Express Link (CXL) efforts.

Mahesh Wagh

Senior Fellow & Server System Architect
AMD

Mahesh Wagh is AMD Sr. Fellow, Server System Architect in the AMD Datacenter System Architecture and Engineering team, developing world-class products and solutions around EPYC processors.

Prior to joining AMD, Mahesh was a Senior Principal Engineer at Intel corporation, focusing on IO and SoC architecture and related technology developments. He has broad experience in chipset and IO architecture, design and validation on both Server and Client platforms.

Some of Mahesh´s significant achievements include the enhancements to PCI Express Architecture and Specification, leading CPU IO domain architecture and IO IP architecture & Interfaces and leading AMD´s Compute Express Link (CXL) efforts.

Author:

Stephen Bates

VP & Chief Architect, Emerging Storage Systems
Huawei

Stephen is the VP and  Chief Architect of Emerging Storage Systems at Huawei's Toronto Emerging Storage Lab. He and his team research all aspects of next-generation storage systems from media to programming interfaces to filesystems to virtualized storage to applications.

Stephen is an expert in performance storage, persistent and non-volatile memory, computer networking, signal processing and error correction coding. He is also very active in both the SNIA and NVM Express standard bodies.

Prior to Huawei he was the CTO of Eideticom which is a pioneer company in NVMe-based computational storage. He was also formerly in the CTO office at PMC-Sierra, an Assistant Professor at The Univeristy of Alberta and a Principal Engineer at Massana Inc. Stephen has a PhD from the University of Edinburgh and is a Senior Member of the IEEE.

Stephen Bates

VP & Chief Architect, Emerging Storage Systems
Huawei

Stephen is the VP and  Chief Architect of Emerging Storage Systems at Huawei's Toronto Emerging Storage Lab. He and his team research all aspects of next-generation storage systems from media to programming interfaces to filesystems to virtualized storage to applications.

Stephen is an expert in performance storage, persistent and non-volatile memory, computer networking, signal processing and error correction coding. He is also very active in both the SNIA and NVM Express standard bodies.

Prior to Huawei he was the CTO of Eideticom which is a pioneer company in NVMe-based computational storage. He was also formerly in the CTO office at PMC-Sierra, an Assistant Professor at The Univeristy of Alberta and a Principal Engineer at Massana Inc. Stephen has a PhD from the University of Edinburgh and is a Senior Member of the IEEE.

Author:

Paul Crumley

Senior Technical Staff Member
IBM Research

Paul G Crumley, a Senior Technical Staff Member at IBM Research, enjoys creating systems to solve problems beyond the reach of current technology.

 

Paul’s current project integrates secure, compliant AI capabilities with enterprise Hybrid Cloud allowing clients to extract new business value from their data.

 

Paul’s previous work includes the design and construction of distributed, and high-performance computing systems at CMU, Transarc, and IBM Research. Projects include The Andrew Project at CMU, ASCI White, IBM Global Storage Architecture, Blue Gene Supercomputers, IBM Cloud, and IBM Cognitive Systems. Paul has managed data centers, and brings his first-hand knowledge of these environments, combined with experience of automation and robustness, to the design of AI for Hybrid Cloud infrastructure.

Paul Crumley

Senior Technical Staff Member
IBM Research

Paul G Crumley, a Senior Technical Staff Member at IBM Research, enjoys creating systems to solve problems beyond the reach of current technology.

 

Paul’s current project integrates secure, compliant AI capabilities with enterprise Hybrid Cloud allowing clients to extract new business value from their data.

 

Paul’s previous work includes the design and construction of distributed, and high-performance computing systems at CMU, Transarc, and IBM Research. Projects include The Andrew Project at CMU, ASCI White, IBM Global Storage Architecture, Blue Gene Supercomputers, IBM Cloud, and IBM Cognitive Systems. Paul has managed data centers, and brings his first-hand knowledge of these environments, combined with experience of automation and robustness, to the design of AI for Hybrid Cloud infrastructure.

Author:

Debendra Das Sharma

TTF Co-Chair: CXL Consortium & Senior Fellow: Intel
CXL Consortium

Debendra Das Sharma (Senior Member, IEEE) was born in Odisha, India, in 1967. He received the B.Tech. degree (Hons.) in computer science and engineering from IIT Kharagpur, Kharagpur, India, in 1989, and the Ph.D. degree in computer systems engineering from the University of Massachusetts, Amherst, MA, USA, in 1995.,He joined Hewlett-Packard, Roseville, CA, USA, in 1994, and Intel, Santa Clara, CA, USA, in 2001. He is currently an Senior Fellow with Intel. He is responsible for delivering Intel-wide critical interconnect technologies in Peripheral Component Interconnect Express (PCI Express), Compute Express Link (CXL), Universal Chiplet Interconnect Express (UCIe), Coherency Interconnect, Multi-Chip Package Interconnect, and Rack Scale Architecture. He has been leading the development of PCI-Express, CXL, and UCIe inside Intel as well as across the industry since their inception. He holds 160+ U.S. patents and more than 400 patents worldwide.,Dr. Das Sharma has been awarded the Distinguished Alumnus Award by IIT, in 2019, the 2021 IEEE Region 6 Engineer of the Year Award, the PCI-SIG Lifetime Contribution Award in 2022, and the 2022 IEEE CAS Industrial Pioneer Award. He is currently the Chair of UCIe Board, a Director of PCI-SIG Board, and the Chair of the CXL Board

Debendra Das Sharma

TTF Co-Chair: CXL Consortium & Senior Fellow: Intel
CXL Consortium

Debendra Das Sharma (Senior Member, IEEE) was born in Odisha, India, in 1967. He received the B.Tech. degree (Hons.) in computer science and engineering from IIT Kharagpur, Kharagpur, India, in 1989, and the Ph.D. degree in computer systems engineering from the University of Massachusetts, Amherst, MA, USA, in 1995.,He joined Hewlett-Packard, Roseville, CA, USA, in 1994, and Intel, Santa Clara, CA, USA, in 2001. He is currently an Senior Fellow with Intel. He is responsible for delivering Intel-wide critical interconnect technologies in Peripheral Component Interconnect Express (PCI Express), Compute Express Link (CXL), Universal Chiplet Interconnect Express (UCIe), Coherency Interconnect, Multi-Chip Package Interconnect, and Rack Scale Architecture. He has been leading the development of PCI-Express, CXL, and UCIe inside Intel as well as across the industry since their inception. He holds 160+ U.S. patents and more than 400 patents worldwide.,Dr. Das Sharma has been awarded the Distinguished Alumnus Award by IIT, in 2019, the 2021 IEEE Region 6 Engineer of the Year Award, the PCI-SIG Lifetime Contribution Award in 2022, and the 2022 IEEE CAS Industrial Pioneer Award. He is currently the Chair of UCIe Board, a Director of PCI-SIG Board, and the Chair of the CXL Board