Data Science | Page 4 | Kisaco Research

Data Science

Color: 
#591d35
Enterprise AI
ML at Scale
Systems Design
Data Science
Software Engineering
Strategy
Systems Engineering

Author:

Daniel Wu

Strategic AI Leadership | Keynote Speaker | Educator | Entrepreneur Course Facilitator
Stanford University AI Professional Program

Daniel Wu is an accomplished technical leader with over 20 years of expertise in software engineering, AI/ML, and team development. With a diverse career spanning technology, education, finance, and healthcare, he is credited for establishing high-performing AI teams, pioneering point-of-care expert systems, co-founding a successful online personal finance marketplace, and leading the development of an innovative online real estate brokerage platform. Passionate about technology democratization and ethical AI practices, Daniel actively promotes these principles through involvement in computer science and AI/ML education programs. A sought-after speaker, he shares insights and experiences at international conferences and corporate events. Daniel holds a computer science degree from Stanford University.

Daniel Wu

Strategic AI Leadership | Keynote Speaker | Educator | Entrepreneur Course Facilitator
Stanford University AI Professional Program

Daniel Wu is an accomplished technical leader with over 20 years of expertise in software engineering, AI/ML, and team development. With a diverse career spanning technology, education, finance, and healthcare, he is credited for establishing high-performing AI teams, pioneering point-of-care expert systems, co-founding a successful online personal finance marketplace, and leading the development of an innovative online real estate brokerage platform. Passionate about technology democratization and ethical AI practices, Daniel actively promotes these principles through involvement in computer science and AI/ML education programs. A sought-after speaker, he shares insights and experiences at international conferences and corporate events. Daniel holds a computer science degree from Stanford University.

Edge AI
Enterprise AI
ML at Scale
Novel AI Hardware
Systems Design
Data Science
Software Engineering
Systems Engineering

Author:

Girish Venkataramani

Senior Director, ML Accelerators
Cruise

Girish Venkataramani

Senior Director, ML Accelerators
Cruise

Author:

Ravi Narayanaswami

Principal MLA Architect
Cruise

Ravi Narayanaswami

Principal MLA Architect
Cruise

Author:

Prasun Raha

Head of HW Platform Architecture
Rivian

Prasun Raha

Head of HW Platform Architecture
Rivian

Author:

Nikunj Kotecha

Solutions Architect
BrainChip

Nikunj Kotecha is a Machine Learning Solutions Architect at BrainChip Inc. Currently, he works on developing and optimizing Machine Learning algorithms for the AkidaTM neuromorphic hardware. He also demonstrating capabilities of AkidaTM to client and supports with their neuromorphic solutions for AkidaTM. He has a Master of Science in Computer Science, where he specialized in concepts of Artificial intelligence with Deep Learning algorithms. At the time, he was a part of the Machine Learning lab and has published technical papers, supported research into different avenues of AI. He published research on Cross-Modal Fusion with Transformer architecture for Sign Language translation during the completion of his Masters. He has also worked at Oracle, where he build and integrated Machine Learning solutions to provide operational benefits of using Oracle Clinical Trial software.

Nikunj Kotecha

Solutions Architect
BrainChip

Nikunj Kotecha is a Machine Learning Solutions Architect at BrainChip Inc. Currently, he works on developing and optimizing Machine Learning algorithms for the AkidaTM neuromorphic hardware. He also demonstrating capabilities of AkidaTM to client and supports with their neuromorphic solutions for AkidaTM. He has a Master of Science in Computer Science, where he specialized in concepts of Artificial intelligence with Deep Learning algorithms. At the time, he was a part of the Machine Learning lab and has published technical papers, supported research into different avenues of AI. He published research on Cross-Modal Fusion with Transformer architecture for Sign Language translation during the completion of his Masters. He has also worked at Oracle, where he build and integrated Machine Learning solutions to provide operational benefits of using Oracle Clinical Trial software.

Author:

David Tai

Senior Staff Engineer
DiDi Autonomous Driving

David Tai

Senior Staff Engineer
DiDi Autonomous Driving
Enterprise AI
ML at Scale
Data Science
Software Engineering
Strategy

Author:

Dr. Caiming Xiong

VP of AI Research and Applied AI
Salesforce

Dr. Caiming Xiong is VP of AI Research and Applied AI at Salesforce. Dr. Xiong holds a Ph.D. from the department of Computer Science and Engineering, University at Buffalo, SUNY and worked as a Postdoctoral Researcher Scholar at the University of California, Los Angeles (UCLA).

Dr. Caiming Xiong

VP of AI Research and Applied AI
Salesforce

Dr. Caiming Xiong is VP of AI Research and Applied AI at Salesforce. Dr. Xiong holds a Ph.D. from the department of Computer Science and Engineering, University at Buffalo, SUNY and worked as a Postdoctoral Researcher Scholar at the University of California, Los Angeles (UCLA).

In developing applications for a variety of different infrastructure and hardware targets, machine learning developers face a dynamic and uncertain landscape where optimization and interoperability become challenging tasks. 

This panel will address how to build infrastructure with developer efficiency in mind, so that developers can focus on creating game-changing machine learning solutions for organizations and consumers. It will also address how hardware, systems and other technology vendors can assist in this effort.

Developer Efficiency
Enterprise AI
ML at Scale
Systems Design
Data Science
Software Engineering
Strategy
Systems Engineering

Author:

Ritu Goel

Director, Product Management, Adobe Sensei
Adobe

Ritu Goel is Director of Product Management at Adobe, where she has been driving strategy for AI/ML platform since its early days with the vision of democratizing AI/ML development at Adobe. Prior to this, Ritu has spent more than a decade leading product strategy and execution of various enterprise to consumer products and platforms at eBay, Macys.com and Infosys. Ritu has a bachelor of engineering from Indian Institute of Technology, Roorkee. 

Ritu Goel

Director, Product Management, Adobe Sensei
Adobe

Ritu Goel is Director of Product Management at Adobe, where she has been driving strategy for AI/ML platform since its early days with the vision of democratizing AI/ML development at Adobe. Prior to this, Ritu has spent more than a decade leading product strategy and execution of various enterprise to consumer products and platforms at eBay, Macys.com and Infosys. Ritu has a bachelor of engineering from Indian Institute of Technology, Roorkee. 

Author:

Jeff Boudier

Product Director
Hugging Face

Jeff Boudier is a product director at Hugging Face, creator of Transformers, the leading open-source NLP library. Previously Jeff was a co-founder of Stupeflix, acquired by GoPro, where he served as director of Product Management, Product Marketing, Business Development and Corporate Development.

Jeff Boudier

Product Director
Hugging Face

Jeff Boudier is a product director at Hugging Face, creator of Transformers, the leading open-source NLP library. Previously Jeff was a co-founder of Stupeflix, acquired by GoPro, where he served as director of Product Management, Product Marketing, Business Development and Corporate Development.

Author:

Sree Ganesan

VP of Product
d-Matrix

Sree Ganesan, VP of Product, d-Matrix: Sree is responsible for product management functions and business development efforts across the company. She manages the product lifecycle, definition and translation of customer needs to the product development function, acting as the voice of the customer. Prior, Sree led the Software Product Management effort at Habana Labs/Intel, delivering state-of-the-art deep learning capabilities of the Habana SynapseAI® software suite to the market. Previously, she was Engineering Director in Intel’s AI Products Group, where she was responsible for AI software strategy and deep learning framework integration for Nervana NNP AI accelerators. Sree earned a bachelor’s degree in electrical engineering from the Indian Institute of Technology Madras and a PhD in computer engineering from the University of Cincinnati, Ohio.

Sree Ganesan

VP of Product
d-Matrix

Sree Ganesan, VP of Product, d-Matrix: Sree is responsible for product management functions and business development efforts across the company. She manages the product lifecycle, definition and translation of customer needs to the product development function, acting as the voice of the customer. Prior, Sree led the Software Product Management effort at Habana Labs/Intel, delivering state-of-the-art deep learning capabilities of the Habana SynapseAI® software suite to the market. Previously, she was Engineering Director in Intel’s AI Products Group, where she was responsible for AI software strategy and deep learning framework integration for Nervana NNP AI accelerators. Sree earned a bachelor’s degree in electrical engineering from the Indian Institute of Technology Madras and a PhD in computer engineering from the University of Cincinnati, Ohio.

Author:

Daniel Wu

Strategic AI Leadership | Keynote Speaker | Educator | Entrepreneur Course Facilitator
Stanford University AI Professional Program

Daniel Wu is an accomplished technical leader with over 20 years of expertise in software engineering, AI/ML, and team development. With a diverse career spanning technology, education, finance, and healthcare, he is credited for establishing high-performing AI teams, pioneering point-of-care expert systems, co-founding a successful online personal finance marketplace, and leading the development of an innovative online real estate brokerage platform. Passionate about technology democratization and ethical AI practices, Daniel actively promotes these principles through involvement in computer science and AI/ML education programs. A sought-after speaker, he shares insights and experiences at international conferences and corporate events. Daniel holds a computer science degree from Stanford University.

Daniel Wu

Strategic AI Leadership | Keynote Speaker | Educator | Entrepreneur Course Facilitator
Stanford University AI Professional Program

Daniel Wu is an accomplished technical leader with over 20 years of expertise in software engineering, AI/ML, and team development. With a diverse career spanning technology, education, finance, and healthcare, he is credited for establishing high-performing AI teams, pioneering point-of-care expert systems, co-founding a successful online personal finance marketplace, and leading the development of an innovative online real estate brokerage platform. Passionate about technology democratization and ethical AI practices, Daniel actively promotes these principles through involvement in computer science and AI/ML education programs. A sought-after speaker, he shares insights and experiences at international conferences and corporate events. Daniel holds a computer science degree from Stanford University.

 

Edge AI
Enterprise AI
ML at Scale
Novel AI Hardware
Systems Design
Data Science
Software Engineering
Strategy
Systems Engineering
Hardware Engineering

Author:

Victor Peng

President, Adaptive and Embedded Computing Group
AMD

Victor Peng is President of the Adaptive and Embedded Computing group at AMD. He is responsible for AMD’s Adaptive SmartNIC, FPGA, Adaptive SoC, embedded CPU, and embedded APU business that serve multiple market segments including the data center, communications, automotive, industrial, A&D, healthcare, test/measure/emulation, and other embedded markets. Peng also serves on the board of KLA Corporation.

Peng rejoined AMD in 2022 after 14 years at Xilinx, most recently serving as president and CEO. Prior to joining Xilinx, Peng worked at AMD as corporate vice president of silicon engineering for the graphics products group (GPG) and was the co-leader of the central silicon engineering team supporting graphics, game console products, and CPU chipsets. Prior to that, Peng held executive and engineering leadership roles at ATI, TZero Technologies, MIPS Technologies, SGI, and Digital Equipment Corp. 

Victor Peng

President, Adaptive and Embedded Computing Group
AMD

Victor Peng is President of the Adaptive and Embedded Computing group at AMD. He is responsible for AMD’s Adaptive SmartNIC, FPGA, Adaptive SoC, embedded CPU, and embedded APU business that serve multiple market segments including the data center, communications, automotive, industrial, A&D, healthcare, test/measure/emulation, and other embedded markets. Peng also serves on the board of KLA Corporation.

Peng rejoined AMD in 2022 after 14 years at Xilinx, most recently serving as president and CEO. Prior to joining Xilinx, Peng worked at AMD as corporate vice president of silicon engineering for the graphics products group (GPG) and was the co-leader of the central silicon engineering team supporting graphics, game console products, and CPU chipsets. Prior to that, Peng held executive and engineering leadership roles at ATI, TZero Technologies, MIPS Technologies, SGI, and Digital Equipment Corp. 

 

Developer Efficiency
Enterprise AI
ML at Scale
Novel AI Hardware
Systems Design
Data Science
Software Engineering
Strategy
Systems Engineering

Author:

Mark Russinovich

CTO and Technical Fellow, Azure
Microsoft

Mark Russinovich is Chief Technology Officer and Technical Fellow for Microsoft Azure, Microsoft’s global enterprise-grade cloud platform. A widely recognized expert in distributed systems, operating systems and cybersecurity, Mark earned a Ph.D. in computer engineering from Carnegie Mellon University. He later co-founded Winternals Software, joining Microsoft in 2006 when the company was acquired. Mark is a popular speaker at industry conferences such as Microsoft Ignite, Microsoft Build, and RSA Conference. He has authored several nonfiction and fiction books, including the Microsoft Press Windows Internals book series, Troubleshooting with the Sysinternals Tools, as well as fictional cyber security thrillers Zero Day, Trojan Horse and Rogue Code.

Mark Russinovich

CTO and Technical Fellow, Azure
Microsoft

Mark Russinovich is Chief Technology Officer and Technical Fellow for Microsoft Azure, Microsoft’s global enterprise-grade cloud platform. A widely recognized expert in distributed systems, operating systems and cybersecurity, Mark earned a Ph.D. in computer engineering from Carnegie Mellon University. He later co-founded Winternals Software, joining Microsoft in 2006 when the company was acquired. Mark is a popular speaker at industry conferences such as Microsoft Ignite, Microsoft Build, and RSA Conference. He has authored several nonfiction and fiction books, including the Microsoft Press Windows Internals book series, Troubleshooting with the Sysinternals Tools, as well as fictional cyber security thrillers Zero Day, Trojan Horse and Rogue Code.

Chip Design
Edge AI
Enterprise AI
ML at Scale
Novel AI Hardware
Systems Design
Data Science
Software Engineering
Strategy
Systems Engineering

Author:

Rashid Attar

Head of Engineering, Cloud/Edge AI Inference Accelerators
Qualcomm

Rashid Attar joined Qualcomm, San Deigo, CA, USA, and has involved in various aspects CDMA wireless data (EV-DO) and voice systems (IS-95, 1x-Advanced) in 1996, where he was the Project Engineer of CDMA2000-advanced from 2009 to 2013 and CDMA Modem Systems Lead at QCT from 20 through 2013. From 2014 to mid-2016, he led the ultra-low-power ASIC platform project. He is currently a Vice President Engineering with Corporate Research and Development, Qualcomm. He leads the ASIC and Hardware Department in Qualcomm Research. The Qualcomm Research portfolio consists of Communications (5G, Cellular V2X, Satellite Communications, Wi-Fi, and Industrial Internet of Things), ASIC and HW Research and Development, and Embedded IoE systems (Always on computer vision, Autonomous Driving, Robotics, and AR/VR). The ASIC and Hardware Group Research and Development portfolio consists of 5G (RFICs, PAs, Interfaces, Packaging), processors (CPUs, Programmable deep learning accelerators), ultra-low-power platform (processor, communications, memory, machine learning accelerators, power management, wireless charging), core CMOS Research and Development (3-DIC and Thermal-aware designs), and Antenna Design. He holds approximately 160 granted U.S. patents

Rashid Attar

Head of Engineering, Cloud/Edge AI Inference Accelerators
Qualcomm

Rashid Attar joined Qualcomm, San Deigo, CA, USA, and has involved in various aspects CDMA wireless data (EV-DO) and voice systems (IS-95, 1x-Advanced) in 1996, where he was the Project Engineer of CDMA2000-advanced from 2009 to 2013 and CDMA Modem Systems Lead at QCT from 20 through 2013. From 2014 to mid-2016, he led the ultra-low-power ASIC platform project. He is currently a Vice President Engineering with Corporate Research and Development, Qualcomm. He leads the ASIC and Hardware Department in Qualcomm Research. The Qualcomm Research portfolio consists of Communications (5G, Cellular V2X, Satellite Communications, Wi-Fi, and Industrial Internet of Things), ASIC and HW Research and Development, and Embedded IoE systems (Always on computer vision, Autonomous Driving, Robotics, and AR/VR). The ASIC and Hardware Group Research and Development portfolio consists of 5G (RFICs, PAs, Interfaces, Packaging), processors (CPUs, Programmable deep learning accelerators), ultra-low-power platform (processor, communications, memory, machine learning accelerators, power management, wireless charging), core CMOS Research and Development (3-DIC and Thermal-aware designs), and Antenna Design. He holds approximately 160 granted U.S. patents

Developer Efficiency
Enterprise AI
Data Science
Software Engineering
Systems Engineering
Moderator

Author:

Carlos Guestrin

Professor, Computer Science
Stanford

Carlos Guestrin is a Professor in the Computer Science Department at Stanford University. His previous positions include the Amazon Professor of Machine Learning at the Computer Science & Engineering Department of the University of Washington, the Finmeccanica Associate Professor at Carnegie Mellon University, and the Senior Director of Machine Learning and AI at Apple, after the acquisition of Turi, Inc. (formerly GraphLab and Dato) — Carlos co-founded Turi, which developed a platform for developers and data scientist to build and deploy intelligent applications. He is a technical advisor for OctoML.ai. His team also released a number of popular open-source projects, including XGBoost, LIME, Apache TVM, MXNet, Turi Create, GraphLab/PowerGraph, SFrame, and GraphChi. Carlos received the IJCAI Computers and Thought Award and the Presidential Early Career Award for Scientists and Engineers (PECASE). He is also a recipient of the ONR Young Investigator Award, NSF Career Award, Alfred P. Sloan Fellowship, and IBM Faculty Fellowship, and was named one of the 2008 ‘Brilliant 10’ by Popular Science Magazine. Carlos’ work received awards at a number of conferences and journals, including ACL, AISTATS, ICML, IPSN, JAIR, JWRPM, KDD, NeurIPS, UAI, and VLDB. He is a former member of the Information Sciences and Technology (ISAT) advisory group for DARPA.

Carlos Guestrin

Professor, Computer Science
Stanford

Carlos Guestrin is a Professor in the Computer Science Department at Stanford University. His previous positions include the Amazon Professor of Machine Learning at the Computer Science & Engineering Department of the University of Washington, the Finmeccanica Associate Professor at Carnegie Mellon University, and the Senior Director of Machine Learning and AI at Apple, after the acquisition of Turi, Inc. (formerly GraphLab and Dato) — Carlos co-founded Turi, which developed a platform for developers and data scientist to build and deploy intelligent applications. He is a technical advisor for OctoML.ai. His team also released a number of popular open-source projects, including XGBoost, LIME, Apache TVM, MXNet, Turi Create, GraphLab/PowerGraph, SFrame, and GraphChi. Carlos received the IJCAI Computers and Thought Award and the Presidential Early Career Award for Scientists and Engineers (PECASE). He is also a recipient of the ONR Young Investigator Award, NSF Career Award, Alfred P. Sloan Fellowship, and IBM Faculty Fellowship, and was named one of the 2008 ‘Brilliant 10’ by Popular Science Magazine. Carlos’ work received awards at a number of conferences and journals, including ACL, AISTATS, ICML, IPSN, JAIR, JWRPM, KDD, NeurIPS, UAI, and VLDB. He is a former member of the Information Sciences and Technology (ISAT) advisory group for DARPA.

Author:

Sakyasingha Dasgupta

Founder & CEO
EdgeCortix

Sakya is the founder and Chief Executive officer of EdgeCortix. He is an artificial intelligence (AI) and machine learning technologist, entrepreneur, and engineer with over a decade of experience in taking cutting edge AI research from ideation stage to scalable products, across different industry verticals.  He has lead teams at global companies like Microsoft and IBM Research / IBM Japan, along with national research labs like RIKEN Japan and the Max Planck Institute Germany. Previously, he helped establish and lead the technology division at lean startups in Japan and Singapore, in semiconductor technology, robotics and Fintech sectors. Sakya is the inventor of over 20 patents and has published widely on machine learning and AI with over 1,000 citations. 

Sakya holds a PhD. in Physics of Complex Systems from the Max Planck Institute in Germany, along with Masters in Artificial Intelligence from The University of Edinburgh and a Bachelors of Computer Engineering. Prior to founding EdgeCortix he completed his entrepreneurship studies from the MIT Sloan School of Management.

Sakyasingha Dasgupta

Founder & CEO
EdgeCortix

Sakya is the founder and Chief Executive officer of EdgeCortix. He is an artificial intelligence (AI) and machine learning technologist, entrepreneur, and engineer with over a decade of experience in taking cutting edge AI research from ideation stage to scalable products, across different industry verticals.  He has lead teams at global companies like Microsoft and IBM Research / IBM Japan, along with national research labs like RIKEN Japan and the Max Planck Institute Germany. Previously, he helped establish and lead the technology division at lean startups in Japan and Singapore, in semiconductor technology, robotics and Fintech sectors. Sakya is the inventor of over 20 patents and has published widely on machine learning and AI with over 1,000 citations. 

Sakya holds a PhD. in Physics of Complex Systems from the Max Planck Institute in Germany, along with Masters in Artificial Intelligence from The University of Edinburgh and a Bachelors of Computer Engineering. Prior to founding EdgeCortix he completed his entrepreneurship studies from the MIT Sloan School of Management.

Author:

Luis Ceze

Co-founder and CEO
OctoML

Luis Ceze is Co-founder and CEO at OctoML, Professor in the Paul G. Allen School of Computer Science and Engineering at the University of Washington, and Venture Partner at Madrona Venture Group. His research focuses on the intersection between computer architecture, programming languages, machine learning and biology. His current focus is on approximate computing for efficient machine learning andDNA-based data storage. He co-directs the Molecular Information Systems Lab (MISL), the Systems and Architectures for Machine Learning lab (SAMPL) and the Sampa Lab for HW/SW co-design. He is a recipient of an NSF CAREER Award, a Sloan Research Fellowship, a Microsoft Research Faculty Fellowship, the IEEE TCCA young Computer Architect Award and UIUC Distinguished Alumni Award.

Luis Ceze

Co-founder and CEO
OctoML

Luis Ceze is Co-founder and CEO at OctoML, Professor in the Paul G. Allen School of Computer Science and Engineering at the University of Washington, and Venture Partner at Madrona Venture Group. His research focuses on the intersection between computer architecture, programming languages, machine learning and biology. His current focus is on approximate computing for efficient machine learning andDNA-based data storage. He co-directs the Molecular Information Systems Lab (MISL), the Systems and Architectures for Machine Learning lab (SAMPL) and the Sampa Lab for HW/SW co-design. He is a recipient of an NSF CAREER Award, a Sloan Research Fellowship, a Microsoft Research Faculty Fellowship, the IEEE TCCA young Computer Architect Award and UIUC Distinguished Alumni Award.

Author:

Jian Zhang

Director, Machine Learning
SambaNova Systems

Jian Zhang

Director, Machine Learning
SambaNova Systems

Transformers are in high demand, particularly in industries like BFSI and healthcare, for language processing, understanding, classification, generation and translation. The parameter counts for models like GPT, that are fast becoming the norm in the world of NLP, are mind-boggling, and the cost involved in training and deploying even more so. If the vast potential for LLMs is to extend beyond the wealthiest companies and research institutions on the planet, then there is a need to evaluate how to lower the barriers of entry for experimentation and research on models like GPT. There's also a need to discuss the extent to which bigger is better, in the field of practical and commercial NLP.

This panel will look at the state of play of how enterprises are using large language models today, what their plans are for future research in NLP, and how hardware & systems builders and organizations like HuggingFace can help bring state-of-the-art performance into production in smaller, more resource-constrained enterprises and labs.

Developer Efficiency
Enterprise AI
ML at Scale
NLP
Novel AI Hardware
Systems Design
Data Science
Hardware Engineering
Software Engineering
Strategy
Systems Engineering

Author:

Phil Brown

VP, Scaled Systems Product
Graphcore

Phil leads Graphcore’s efforts to build large scale AI/ML processing capability using Graphcore unique Intelligence Processing Units (IPUs) and IPU-Fabric and Streaming Memory technology. Previously he has held a number of different roles at Graphcore including Director of Applications, leading development of Graphcore’s flagship AL/ML models, and Director of Field Engineering, which acts as the focal point for technical engagements with our customers. Prior to joining Graphcore, Phil worked for Cray Inc. in a number of roles, including leading their engagement with the weather forecasting and climate research customers worldwide and as a technical architect. Phil holds a PhD in Computational Chemistry from the University of Bristol.

Phil Brown

VP, Scaled Systems Product
Graphcore

Phil leads Graphcore’s efforts to build large scale AI/ML processing capability using Graphcore unique Intelligence Processing Units (IPUs) and IPU-Fabric and Streaming Memory technology. Previously he has held a number of different roles at Graphcore including Director of Applications, leading development of Graphcore’s flagship AL/ML models, and Director of Field Engineering, which acts as the focal point for technical engagements with our customers. Prior to joining Graphcore, Phil worked for Cray Inc. in a number of roles, including leading their engagement with the weather forecasting and climate research customers worldwide and as a technical architect. Phil holds a PhD in Computational Chemistry from the University of Bristol.

Author:

Selcuk Kopru

Director, Engineering & Research, Search
eBay

Selcuk Kopru is Head of ML & NLP at eBay and is an experienced AI leader with proven expertise in creating and deploying cutting edge NLP and AI technologies and systems. He is experienced in developing scalable Machine Learning solutions to solve big data problems that involve text and multimodal data. He is also skilled in Python, Java, C++, Machine Translation and Pattern Recognition. Selcuk is also a strong research professional with a Doctor of Philosophy (PhD) in NLP in Computer Science from Middle East Technical University.

Selcuk Kopru

Director, Engineering & Research, Search
eBay

Selcuk Kopru is Head of ML & NLP at eBay and is an experienced AI leader with proven expertise in creating and deploying cutting edge NLP and AI technologies and systems. He is experienced in developing scalable Machine Learning solutions to solve big data problems that involve text and multimodal data. He is also skilled in Python, Java, C++, Machine Translation and Pattern Recognition. Selcuk is also a strong research professional with a Doctor of Philosophy (PhD) in NLP in Computer Science from Middle East Technical University.

Author:

Jeff Boudier

Product Director
Hugging Face

Jeff Boudier is a product director at Hugging Face, creator of Transformers, the leading open-source NLP library. Previously Jeff was a co-founder of Stupeflix, acquired by GoPro, where he served as director of Product Management, Product Marketing, Business Development and Corporate Development.

Jeff Boudier

Product Director
Hugging Face

Jeff Boudier is a product director at Hugging Face, creator of Transformers, the leading open-source NLP library. Previously Jeff was a co-founder of Stupeflix, acquired by GoPro, where he served as director of Product Management, Product Marketing, Business Development and Corporate Development.

Author:

Morteza Noshad

Senior ML/NLP Scientist
Vida Health

Morteza Noshad is a senior ML/NLP scientist at Vida health. He is skilled at designing large scale NLP models for different healthcare applications such as automated clinical documentation, symptom detection and question answering. Morteza was a research scientist at Stanford University focusing on graph neural networks for clinical decision support systems where he received the SAGE Scientist Award for his research. Morteza received his Ph.D. in Computer Science from University of Michigan where he contributed to the theory of information bottleneck in deep learning. 

Morteza Noshad

Senior ML/NLP Scientist
Vida Health

Morteza Noshad is a senior ML/NLP scientist at Vida health. He is skilled at designing large scale NLP models for different healthcare applications such as automated clinical documentation, symptom detection and question answering. Morteza was a research scientist at Stanford University focusing on graph neural networks for clinical decision support systems where he received the SAGE Scientist Award for his research. Morteza received his Ph.D. in Computer Science from University of Michigan where he contributed to the theory of information bottleneck in deep learning. 

Vision
NLP and Speech
Connectivity and 5G
Chip and Systems Design
On Device ML
Innovation at the Edge
Edge Trade Offs
Data Science
Hardware and Systems Engineering
Software Engineering
Strategy
Industry & Investment